Abstract

Contraction-level invariant surface electromyography pattern recognition introduces the decrease of training time and decreases the limitation of clinical prostheses. This study intended to examine whether a signal pre-processing method named frequency division technique (FDT) for online myoelectric pattern recognition classification is robust against contraction-level variation, and whether this pre-processing method has an advantage over traditional time-domain pattern recognition techniques even in the absence of muscle contraction-level variation. Eight healthy and naïve subjects performed wrist contractions during two degrees of freedom goal-oriented tasks, divided in three groups of type I, type II, and type III. The performance of these tasks, when the two different methods were used, was quantified by completion rate, completion time, throughput, efficiency, and overshoot. The traditional and the FDT method were compared in four runs, using combinations of normal or high muscle contraction level, and the traditional method or FDT. The results indicated that FDT had an advantage over traditional methods in the tested real-time myoelectric control tasks. FDT had a much better median completion rate of tasks (95%) compared to the traditional method (77.5%) among non-perfect runs, and the variability in FDT was strikingly smaller than the traditional method (p < 0.001). Moreover, the FDT method outperformed the traditional method in case of contraction-level variation between the training and online control phases (p = 0. 005 for throughput in type I tasks with normal contraction level, p = 0.006 for throughput in type II tasks, and p = 0.001 for efficiency with normal contraction level of all task types). This study shows that FDT provides advantages in online myoelectric control as it introduces robustness over contraction-level variations.

Highlights

  • Surface electromyography signals, the muscles’ electrical activities recorded at the skin surface, are used for the control of multifunction upper-limb prostheses (Parker et al, 2006)

  • The purpose of this study was to investigate the effect of frequency division technique (FDT) in an online myoelectric control scheme as the applied contraction level varies in the training and control phases

  • The variability in completion rate (CR) for FDT was 3.45%, which was strikingly smaller than the bandpass method with the variability of 12.87% (p < 0.001)

Read more

Summary

Introduction

Surface electromyography (sEMG) signals, the muscles’ electrical activities recorded at the skin surface, are used for the control of multifunction upper-limb prostheses (Parker et al, 2006). Various factors that can induce non-stationary change to EMG and EMG features between the training and control phases have been identified These non-stationarities can significantly affect the performance of pattern recognition-based (PR-based) algorithms in activities of daily living (ADL). Features of sEMG or specific portions of sEMG signal that do not change (or have limited change) at different contraction levels is preferable as they can lead to an elegant control scheme that is inherently robust against varying contraction levels between the training and control phases In He et al (2015b), a frequency-based feature set is proposed as the first attempt to realize a contraction-level independent myoelectric pattern recognition classification. It was shown that with this new feature set, the classification performance was significantly better than a classic pattern recognition algorithm when presented with

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.