Genetics is central to the susceptibility or resistance to autoimmunity, and mounting evidence indicates that the intestinal microbiota also plays an essential role. In murine arthritis models, short-chain fat acid supplementation reduces disease severity by modulating tryptophan-metabolizing bacteria. Common microbiota transfer methods modulate arthritis severity, however, they are not practical for chronic models such as pristane-induced arthritis (PIA). PIA-resistant (HIII) and PIA-susceptible (LIII) mice harbor diverse intestinal microbiomes, which might be implicated in their divergent susceptibility. To investigate this hypothesis, we used cross-fostering to stably transfer the microbiota. In this study, we show that extreme susceptibility to arthritis can be modulated by early microbiota transfer, with long-lasting effects. HIII and LIII pups were cross-fostered and injected with pristane after weaning. PIA severity in cross-fostered LIII mice was significantly reduced in the chronic phase. Metagenomic analyses showed that HIII and LIII microbiomes were partly shifted by cross-fostering. Microbial groups whose abundance was associated with either HIII or LIII mice presented similar composition in cross-fostered mice of the opposite strains, suggesting a role in PIA susceptibility. Identification of bacterial groups that modulate chronic arthritis will contribute novel insights on the pathogenesis of human rheumatoid arthritis and targets for replication and functional studies.