Abstract

The magnetism in the correlated metal CaRuO3 is enigmatic as it is poised near a triple point among the ferromagnetic, antiferromagnetic, and paramagnetic ground states. Here we report a detailed work on structural, spectroscopic, magnetic, and transport properties in CaRu 1−x Cr x O3. We find that Cr doping reduces the orthorhombicity in CaRuO3. Surprisingly, a tiny (x = 0.01) amount of Cr-doping drives the magnetic ground state from ‘paramagnetic-like’ to ferrimagnetic. Slightly higher Cr-doping (x = 0.05) results formation of magnetic clusters which gives rise to Griffiths singularity and power law divergence in magnetic susceptibility. The magnetism in CaRu 1−x Cr x O3 is explained in terms of ‘seven atom’ ferrimagnetic clusters. Electrical transport shows a gradual evolution of a non-metallic state upon Cr-doping. In particular, for x ⩾ 0.1, the temperature-dependent resistivity follows Mott-VRH conduction. The XPS study also supports significant role of disorder and electron correlation which effectively reduces the itinerant character of electrons. Finally, a new T-x phase diagram is constructed depicting the evolution of electronic and magnetic state in CaRu 1−x Cr x O3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call