Abstract

Quantum sensing improves the accuracy of measurements of relevant parameters by exploiting the unique properties of quantum systems. The divergent susceptibility of physical systems near a critical point for quantum phase transition enables criticality-enhanced quantum sensing. The quantum Rabi model (QRM), composed of a single qubit coupled to a single bosonic field, represents a good candidate for realizing such critical enhancement for its simplicity, but it is experimentally challenging to achieve the ultrastrong qubit-field coupling required to realize the critical phenomena. In this work, we explore an alternative to construct the analog of the QRM for the sensing, exploiting the criticality appearing in the Jaynes-Cummings (JC) model whose bosonic field is parametrically driven, not necessitating the ultrastrong coupling condition, thus to some extent relaxing the requirement for practical implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call