The ligands bis(8-quinolinyl)amine (BQAH, 1), (2-pyridin-2-yl-ethyl)-(8-quinolinyl)amine (2-pyridin-2-yl-ethyl-QAH, 2), o-dimethylaminophenyl(8-quinolinyl)amine (o-(NMe2)Ph-QAH, 3), and 3,5-dimethylphenyl(8-quinolinyl)amine (3,5-Me2Ph-QAH, 4) have been prepared in high yield from aryl halide and amine precursors by palladium-catalyzed coupling reactions. Deprotonation of 1 with nBuLi in toluene affords the lithium amide complex [Li][BQA] (5), whose dimeric solid-state crystal structure is presented. Lithium amide 5 was transmetalated by TlOTf to afford the thallium(I) amido complex [Tl][BQA] (6). An X-ray structural study of 6 shows it to be a 1:1 complex of the BQA ligand and Tl. Entry into the group 10 chemistry of the parent ligand 1 was effected by both protolytic and metathetical strategies. Thus, the divalent chloride complexes (BQA)PtCl (7), (BQA)PdCl (8), and (BQA)NiCl (9) were prepared and fully characterized. An X-ray structural study for each of these three complexes shows them to be well-defined, square-planar complexes in which the auxiliary BQA ligand binds in a planar, eta(3)-fashion. For comparison, the reactivity of ligands 2-4 with (COD)PtCl2 was studied. While reaction with ligand 2 afforded an ill-defined product mixture, ligands 3 and 4 reacted with (COD)PtCl2 to generate the unusual alkyl complexes (o-(NMe2)Ph-QA)Pt(1,2-eta(2)-6-sigma-cycloocta-1,4-dienyl) (10) and (3,5-Me2Ph-QA)Pt(1,2-eta(2)-6-sigma-cycloocta-1,4-dienyl) (11), both of which have been structurally characterized.
Read full abstract