The purpose of this study is to quantify the three-dimensional (3D) structural morphology, bone mineral density (BMD) distribution, and mechanical properties of different China-Japan Friendship Hospital (CJFH) classification types and assist clinicians in classifying necrotic femurs accurately. In this study, 41 cases were classified as types L2 and L3 based on CT images. Then, 3D Statistical Shape and Appearance Models (SSM and SAM) were established, and 80 principal component (PC) modes were extracted from the SSM and SAM as the candidate features. The bone strength of each case was also calculated as the candidate feature using finite element analysis (FEA). Support vector machine (SVM) and Extreme Gradient Boosting (XGBoost) were used to establish 10 machine learning models. Feature selection methods were used to screen the candidate features. The performance of each model was evaluated based on sensitivity, specificity, accuracy, and the area under the receiver operating characteristic (ROC) curve. This resulted in a SVM model for CJFH classification with the performance: accuracy of 87.5%, sensitivity of 85.0%, specificity of 76.0%, and AUC of 94.2%. This study provided effective machine learning models for assisting in diagnosing CJFH types, increasing the objectivity of the diagnosis. They may have great potential for application in clinical assessments of CJFH classification.
Read full abstract