Abstract

Orthodontic treatment was accompanied by the remodeling of cancellous bone in alveolar bone (CBAB), which manifested as the increase or decrease in bone mineral density (BMD). BMD is closely related to the mechanical properties of the alveolar bone. Therefore, the aim of this study was to quantify the effect of BMD on its viscoelastic behavior and to assess orthodontic forces at different BMDs. A total of nine CBAB samples were cut from the cervical, middle, and apical regions of the right mandible between canine, premolars, and molars. After scanning with micro-computed tomography (micro-CT). The BMD of samples was measured and dynamic mechanical analysis (DMA) was performed. Based on the fourth-order generalized Maxwell model, a viscoelastic constitutive model characterizing the BMD variation was constructed. The BMD exhibited variations within different regions of the CBAB. The storage modulus is positively correlated with BMD, and the loss modulus is negatively correlated with BMD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.