Industrial process heat typically requires large amounts of fossil fuels. Solar energy, while abundant and free, has low energy density, and so large collector areas are needed to meet thermal needs. Land costs in developed areas are often prohibitively high, making rooftop-based concentrating solar power (CSP) attractive. However, limited rooftop space and the low energy density of solar power are usually insufficient to meet a facility’s demands. Maximizing annual CSP energy generation within a bounded rooftop space is necessary to mitigate fossil fuel consumption. This is a different optimization objective than minimizing the Levelized Cost of Energy (LCOE) in typical open-land, utility-scale heliostat layout optimization. Innovative designs are necessary, such as compact, energy-dense central receiver systems with non-flat heliostat field topographies that use spatially efficient Tilt–Roll heliostats or multi-rooftop and multi-height distributed urban systems. A novel ray-tracing simulation tool was developed to evaluate these unique scenarios. For compact systems, optimized annual energy production occurred with maximum heliostat spatial density, and the best non-flat heliostat field topography found is a shallow section of a parabolic cylinder with an East–West focal axis, yielding a 10% optical energy improvement. Tightly packed Tilt–Roll heliostats showed a double improvement in optical energy at the receiver compared to Azimuth–Elevation heliostats.
Read full abstract