SUMMARYAllosteric activation and silencing of leukocyte β2-integrins transpire through cation-dependent structural changes, which mediate integrin biosynthesis and recycling, and are essential to designing leukocyte-specific drugs. Stepwise addition of Mg2+ reveals two mutually coupled events for the αXβ2 ligand-binding domain—the αX I-domain—corresponding to allostery establishment and affinity maturation. Electrostatic alterations in the Mg2+-binding site establish long-range couplings, leading to both pH− and Mg2+-occupancy-dependent biphasic stability change in the αX I-domain fold. The ligand-binding sensorgrams show composite affinity events for the αX I-domain accounting for the multiplicity of the αX I-domain conformational states existing in the solution. On cell surfaces, increasing Mg2+ concentration enhanced adhesiveness of αXβ2. This work highlights how intrinsically flexible pH− and cation-sensitive architecture endows a unique dynamic continuum to the αI-domain structure on the intact integrin, thereby revealing the importance of allostery establishment and affinity maturation in both extracellular and intracellular integrin events.
Read full abstract