Ischemic stroke is a leading cause of disability and death globally. Stem cell therapies are emerging as a frontier for enhancing post-stroke recovery, with Muse cells-a subclass of pluripotent stem cells-demonstrating considerable promise. Muse cells are notable not only for their potential in cell replacement but also for their role in modulating immune responses following cerebral infarction. In the present study, we administered Muse cells intravenously to mice after inducing a stroke via distal middle cerebral artery occlusion. We evaluated motor outcomes, splenocyte populations, cytokine profiles, and gene expression 2 weeks after inducing stroke. Additionally, comparisons were drawn between outcomes in splenectomized mice and those receiving adoptive splenocyte transfer to discern the specific influence of the spleen on treatment efficacy. Our findings revealed that Muse cell therapy facilitates motor recovery, an effect that is compromised in the absence of the spleen. Spleens in treated mice exhibited a shift in neutrophil counts, increased cytokine activity, and a notable uptick in the expression of genes related to protein folding. These insights affirm the potential therapeutic effect of Muse cells in post-stroke treatment strategies, with their efficacy attributed, at least in part, to immunomodulatory pathways involving the spleen.
Read full abstract