Abstract Many industrial biotechnological processes use filamentous microorganisms to produce platform chemicals, proteins, enzymes and natural products. Product formation is directly linked to their cellular morphology ranging from dispersed mycelia over loose clumps to compact pellets. Therefore, the adjustment and control of the filamentous cellular morphology pose major challenges for bioprocess engineering. Depending on the filamentous strain and desired product, optimal morphological shapes for achieving high product concentrations vary. However, there are currently no overarching strain- or product-related correlations to improve process understanding of filamentous production systems. The present book chapter summarizes the extensive work conducted in recent years in the field of improving product formation and thus intensifying biotechnological processes with filamentous microorganisms. The goal is to provide prospective scientists with an extensive overview of this scientifically diverse, highly interesting field of study. In the course of this, multiple examples and ideas shall facilitate the combination of their acquired expertise with promising areas of future research. Therefore, this overview describes the interdependence between filamentous cellular morphology and product formation. Moreover, the currently most frequently used experimental techniques for morphological structure elucidation will be discussed in detail. Developed strategies of morphology engineering to increase product formation by tailoring and controlling cellular morphology and thus to intensify processes with filamentous microorganisms will be comprehensively presented and discussed.
Read full abstract