Abstract
White-rot fungi are extensively used in various submerged biotechnology processes to produce ligninolytic enzymes. Transfer of the process from the laboratory to the industrial level requires optimization of the cultivation conditions on the laboratory scale. An interesting area of optimization is pellet growth since this morphological form solves problems such as the decreased oxygen concentration, limited heat, and nutrient transport, which usually occur in dispersed mycelium cultures. Many submerged fermentations with basidiomycetes in pellet form were done with Phanerochaete, Trametes, and Bjerkandera species, among others. In our study, another promising basidiomycete, D. squalens, was used for ligninolytic enzyme production. With the addition of wood particles (sawdust) as a natural inducer and optimization of mixing and aeration conditions in laboratory stirred tank (STR) and bubble column (BCR) reactors on pellet growth and morphology, the secretion of laccase and the manganese-dependent peroxidase into the medium was substantially enhanced. The maximum mean pellet radius was achieved after 10days in the BCR (5.1mm) where pellets were fluffy and 5days in the STR (3.5mm) where they were round and smooth. The maximum Lac activity (1,882Ul(-1)) was obtained after 12days in the STR, while maximum MnP activity (449.8Ul(-1)) occurred after 18days in the BCR. The pellet size and morphology depended on the agitation and aeration conditions and consequently influenced a particular enzyme synthesis. The enzyme activities were high and comparable with the activities found for other investigations in reactors with basidiomycetes in the form of pellets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Industrial Microbiology and Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.