The increased traffic-induced emissions contribute to the exacerbation of airborne particulate matter (PM) pollution. The vegetation barrier (VB) provides a means of reducing the traffic-induced pollutants. However, the effects of VB configuration and local environment on PM dispersion and reduction remain unclear, and thereby needs further advancement on VB design and characteristics. This study constructed a 3D numerical model based on field survey in an open-road VB of Shanghai urban area, and then simulated PM2.5 dispersion under various VB configurations and wind conditions. The results consolidated that the presence of the VB reduced PM2.5 concentration by over 15 % across the VB. A greater bush coverage (2/3 and more) reduces over 14 % more PM2.5 pollution across the VB than that for a greater arbor coverage, and reduces 6 % more PM2.5 pollution in the sidewalk canyon. Given a certain bush planting coverage, planting bushes in the windward area is beneficial to the overall PM2.5 reduction by approximately 4–14 %. The wind directions determine the overall pattern of PM2.5 dispersion across the VB plot, decreasing trends for perpendicular winds but fluctuating curves for parallel winds Wind velocities largely contribute to the changing rates of PM2.5 concentration, the increased wind speed from 1 m/s to 7 m/s accumulated 5–11 % more PM2.5 pollution across the VB plot. This study provides practical insights for effective VB designs in order to mitigate the PM pollution and the human's exposure to PM2.5 in urban open-road environments.