Abstract

AbstractThis paper examines an epidemic patch model with mass‐action transmission mechanism and asymmetric connectivity matrix. Results on the global dynamics of solutions and the spatial structures of endemic equilibrium (EE) solutions are obtained. In particular, we show that when the basic reproduction number is less than one and the dispersal rate of the susceptible population is large, the population would eventually stabilize at the disease‐free equilibrium. However, the disease may persist if is small, even if . In such a scenario, explicit conditions on the model parameters that lead to the existence of multiple EE are identified. These results provide new insights into the dynamics of infectious diseases in multipatch environments. Moreover, results in Li and Peng (Stud Appl Math. 2023;150(3):650‐704), which is for the same model but with symmetric connectivity matrix, are generalized and improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.