A volcanic eruption is a kind of global natural disaster that can occur suddenly and cause great damage to humankind. During the eruption, the magma causes fatal damage to life and property in areas near the volcano, and nearby countries are affected by the spread of volcanic ash, causing secondary damage due to air and soil pollution. Near the Korean peninsula, there exists an active volcano that can spread volcanic ash over long distances by erupting above Volcanic Explosivity Index (VEI) 4. Volcanoes in Japan have been known to cause considerable volcanic ash damage on the Korean Peninsula during eruption. Accordingly, the Korea Meteorological Administration is developing technology to predict and monitor volcanic ash spread using satellite images. However, despite the fact that empirical models for volcanic ash diffusion range prediction are used during volcanic eruptions, continuous improvement is needed for accurate information prediction. In this study, satellite images were analyzed not for the predicted distance of volcanic ash clouds, but for the actual distance of volcanic ash dispersion in cases where the volcanic ashes dispersed in the direction of the Korean peninsula. Of the 3,880 volcanoes that erupted in Japan over the last four years, 111 cases were identified where the height and spread distance of the volcanic ash that erupted toward the Korean Peninsula can be confirmed. In addition, the actual volcanic eruption cases and modeling results were analyzed to determine the extent of volcanic ash spread, and a hypothetical scenario was tested to quantify the direct damage of the volcanic ash. From the analysis of the volcanic ash spread through the virtual simulations, it was found that the height of the volcanic ash, the direction of the wind, and wind speed during volcanic eruption were important factors.