The primary concern of this paper is to investigate stability conditions for the mathematical program: findx ∈En that maximizesf(x):gj(x)≦0 for somej ∈J, wheref is a real scalarvalued function and eachg is a real vector-valued function of possibly infinite dimension. It should be noted that we allow, possibly infinitely many, disjunctive forms. In an earlier work, Evans and Gould established stability theorems wheng is a continuous finite-dimensional real-vector function andJ=1. It is pointed out that the results of this paper reduce to the Evans-Gould results under their assumptions. Furthermore, since we use a slightly more general definition of lower and upper semicontinuous point-to-set mappings, we can dispense with the continuity ofg (except in a few instances where it is implied by convexity assumptions).
Read full abstract