Anion exchange resin is responsible for removing harmful anionic contaminants in drinking water treatment, but it may become a significant source of precursors for disinfection byproducts (DBPs) by shedding material during application without proper pretreatment. Batch contact experiments were performed to investigate the dissolution of magnetic anion exchange resins and their contribution to organics and DBPs. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) released from the resin were highly correlated with the dissolution conditions (contact time and pH), in which 0.7 mg/L DOC and 0.18 mg/L DON were distributed at exposure time of 2 h and pH 7. The formation potential of four DBPs in the shedding fraction was also revealed that trichloromethane (TCM), dichloroacetonitrile (DCAN), nitrosodimethylamine (NDMA), and dichloroacetamide (DCAcAm) concentrations could reach 21.4, 5.1, 12.1 μg/L, and 69.6 ng/L, respectively. Furthermore, the hydrophobic DOC that preferred to detach from the resin mainly originated from the residues of crosslinkers (divinylbenzene) and porogenic agents (straight-chain alkanes) detected by LC-OCD and GC-MS. Nevertheless, pre-cleaning inhibited the leaching of the resin, among which acid-base and ethanol treatments significantly lowered the concentration of leached organics, and formation potential of DBPs (TCM, DCAN, and DCAcAm) below 5 μg/L and NDMA dropped to 10 ng/L.
Read full abstract