A direct torque control (DTC) drive allows direct and independent control of flux linkage and electromagnetic torque by the selection of optimum inverter switching modes. It is a simple method of signal processing which gives excellent dynamic performance. Also transformation of coordinates and voltage decoupling are not required. However, the possible discrete inverter switching vectors cannot always generate exact stator voltage required, to obtain the demanded electromagnetic torque and flux linkages. This results in the production of ripples in the torque as well as flux waveforms. In the present paper a torque ripple reduction methodology is proposed. In this method the circular locus of flux phasor is divided into 10 sector as compared to six sector divisions in conventional DTC method. The basic DTC scheme and the 10-sector method are simulated and compared for their performance. An analysis is done with sector increment so that finally the torque ripple varies slightly as the sector is increased.