Abstract

In this paper, we consider the problem of controlling the interactions of a group of mobile agents, subject to a set of topological constraints. Assuming proximity-limited interagent communication, we leverage mobility, unlike prior work, to enable adjacent agents to interact discriminatively, i.e., to actively retain or reject communication links on the basis of constraint satisfaction. Specifically, we propose a distributed scheme that consists of hybrid controllers with discrete switching for link discrimination, coupled with attractive and repulsive potentials fields for mobility control, where constraint violation predicates form the basis for discernment. We analyze the application of constrained interaction to two canonical coordination objectives, i.e., aggregation and dispersion, with maximum and minimum node degree constraints, respectively. For each task, we propose predicates and control potentials, and examine the dynamical properties of the resulting hybrid systems. Simulation results demonstrate the correctness of our proposed methods and the ability of our framework to generate topology-aware coordinated behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.