The discrete nonlinear Schrödinger equation on Zd\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb Z}^d$$\\end{document}, d≥1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d \\ge 1$$\\end{document} is an example of a dispersive nonlinear wave system. Being a Hamiltonian system that conserves also the ℓ2(Zd)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell ^2({\\mathbb Z}^d)$$\\end{document}-norm, the well-posedness of the corresponding Cauchy problem follows for square-summable initial data. In this paper, we prove that the well-posedness continues to hold for initial data that can grow towards infinity, namely anything that has at most a certain power law growth far away from the origin. The growth condition is loose enough to guarantee that, at least in dimension d=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d=1$$\\end{document}, initial data sampled from any reasonable equilibrium distribution of the defocusing DNLS satisfies it almost surely.
Read full abstract