Abstract
We introduce a mass conserving stochastic perturbation of the discrete nonlinear Schrödinger equation that models the action of a heat bath at a given temperature. We prove that the corresponding canonical Gibbs distribution is the unique invariant measure. In the one-dimensional cubic focusing case on the torus, we prove that in the limit for large time, continuous approximation, and low temperature, the solution converges to the steady wave of the continuous equation that minimizes the energy for a given mass.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastics and Partial Differential Equations: Analysis and Computations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.