Abstract

This work demonstrates distributed motion planning for multi-rotor unmanned aerial vehicle in a windy outdoor environment. The motion planning is modeled as a receding horizon mixed integer nonlinear programming (RH-MINLP) problem. Each quadrotor solves an RH-MINLP to generate its time-optimal speed profile along a minimum snap spline path while satisfying constraints on kinematics, dynamics, communication connectivity, and collision avoidance. The presence of wind disturbances causes the motion planner to continuously regenerate new motion plans, thereby significantly increasing the computational time and possibly leading to safety violations. Control Barrier Functions (CBFs) are used for assist in collision avoidance in the face of wind disturbances while alleviating the need to recalculate the motion plans continually. The RH-MINLPs are solved using a novel combination of heuristic and optimal methods, namely Simulated Annealing and interior-point methods, respectively, to handle discrete variables and nonlinearities in real-time feasibly. The framework is validated in simulations featuring up to 50 quadrotors and Hardware-in-the-loop (HWIL) experiments, followed by outdoor field tests featuring up to 6 DJI M100 quadrotors. Results demonstrate (1) fast online motion planning for outdoor communication-centric multi-quadrotor operations and (2) the utility of CBFs in providing effective motion plans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.