In recent years, there has been an increasing research interest in image de-noising due to an emphasis on sparse representation. When sparse representation theory is compared to transform domain-based image de-noising, the former indicates that the images have more information. It contains structural characteristics that are quite similar to the structure of dictionary-based atoms. This structure and the dictionary-based method is highly unsuccessful. However, image representation assumes that the noise lack such a feature. The dual-tree complex wavelet transform incorporates an increase in transform data density to reduce the effects of sparse data. This technique has been developed to decrease the image noise by selecting the best-predicted threshold value derived from wavelet coefficients. For our experiment, Discrete Cosine Transform (DCT) and Complex Wavelet Transform (CWT) are used to examine how the suggested technique compares the conventional DCT and CWT on sets of realistic images. As for image quality measures, DT-CWT has leveraged superior results. In terms of processing time, DT-CWT gave better results with a wider PSNR range. Further, the proposed model is tested with a standard digital image named Lena and multimedia sensor images for the denoising algorithm. The suggested denoising technique has delivered minimal effect on the MSE value.
Read full abstract