Abstract

In this paper, we present the [Formula: see text]-conforming virtual element (VE) method for the quad-curl problem in two dimensions. Based on the idea of de Rham complex, we first construct three families of [Formula: see text]-conforming VEs, of which the simplest one has only one degree of freedom associated to each vertex and each edge in the lowest-order case, respectively. An exact discrete complex is established between the [Formula: see text]-conforming and [Formula: see text]-conforming VEs. We rigorously prove the interpolation error estimates, the stability of discrete bilinear forms, the coercivity and inf–sup condition of the corresponding discrete formulation. We show that the conforming VEs have the optimal convergence. Some numerical examples are given to confirm the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.