In this note three sets of complex valued functions with pointwise addition and a Riemann Stieltjes convolution product are considered. The functions considered are discrete analytic functions, sequences, and continuous functions of bounded variation defined on the nonnegative real numbers. Each forms a commutative algebra with identity. The discrete analytic functions form a principal ideal ring with five maximal ideals, nine prime ideals, and is essentially a direct sum of four discrete valuation rings. The ring of sequences is isomorphic to an ideal of the ring of discrete analytic functions; it has two maximal and three prime ideals. Both contain divisors of zero. The units, associates, irreducible elements and primes in these two rings are described. The results are used to study the continuous functions; partial results are obtained concerning units and divisors of zero. The product satisfies a convolution theorem.
Read full abstract