The stability of the slope around a flood discharge tunnel is influenced by the space topography, the geological structure, the seepage of the flood discharge tunnel, the rainfall and so on, which introduce complexity and uncertainty to the problem of slope engineering. For slope stability analysis at the outlet of a flood discharge tunnel affected by high interior hydraulic pressure, the inner water exosmosis (IWE) phenomenon will become obvious, the rock’s mechanical properties will be changed, and the seepage effects of the flood discharge tunnel should be focused on. In this paper, a complicated three-dimensional (3D) numerical simulation and safety assessment of the slope around the flood discharge tunnel at Yangqu hydropower station is implemented in FLAC3D, and 3D slide arcs of good shape are obtained. When calculating the safety coefficient of slopes, the Shear Strength Reduction Technique (SSRT) is adopted, and a factor of safety (FOS) is then found. It is found that the FOS of the natural slope is 1.43 in its original condition, and in this case, the slope is in a stable state. The safety factor of the slope is 1.30 after the slope excavation without considering IWE. Under the condition of normal seepage from inside the tunnel to the outside, the safety factor is 1.29. For investigating the influence of IWE on the slope stability, we design three types of scenarios – minimal seepage, normal seepage and serious seepage – for the fluid–solid coupling calculation. Under the serious seepage condition, the safety factor of the slope is 1.26, and it is in a critical failure state. It should be pointed out that uncertainties in input parameters are not researched in this paper. There is not big difference among safety factors under different scenarios mainly because the maximum of inner water head of the flood discharge tunnel is only about 80m. It still can be found that seepage action has an effect on the stability of the whole slope from calculation results. The stress concentrated region (SCR) near the surrounding rock grows from inside to outside as the seepage intensity increases. The surrounding rock will experience more water pressure and seepage pressure, and, at the same time, the area of the plastic zone grows. Suitable treatments and suggestions are discussed to eliminate the adverse effects of IWE. The research results in this paper can provide a reference for construction, reinforcement and drainage design of the slope in similar hydropower slope engineering scenarios.
Read full abstract