In this paper, we derive a comparison principle for non-negative weak sub- and super-solutions to doubly nonlinear parabolic partial differential equations whose prototype is ∂tuq-div(|∇u|p-2∇u)=0inΩT,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\partial _t u^q - {{\\,\ extrm{div}\\,}}{\\big (|\ abla u|^{p-2}\ abla u \\big )}=0 \\qquad \ ext{ in } \\Omega _T, \\end{aligned}$$\\end{document}with q>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$q>0$$\\end{document} and p>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$p>1$$\\end{document} and ΩT:=Ω×(0,T)⊂Rn+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega _T:=\\Omega \ imes (0,T)\\subset \\mathbb {R}^{n+1}$$\\end{document}. Instead of requiring a lower bound for the sub- or super-solutions in the whole domain ΩT\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega _T$$\\end{document}, we only assume the lateral boundary data to be strictly positive. The main results yield some applications. Firstly, we obtain uniqueness of non-negative weak solutions to the associated Cauchy–Dirichlet problem. Secondly, we prove that any weak solution is also a viscosity solution.
Read full abstract