Abstract
The model analyzed in this paper has its origins in the description of composites made by a hosting medium containing a periodic array of inclusions coated by a thin layer consisting of sublayers of two different materials. This two-phase coating material is such that the external part has a low diffusivity in the orthogonal direction, while the internal one has high diffusivity along the tangential direction. In a previous paper (Amar in IFB 21:41–59, 2019), by means of a concentration procedure, the internal layer was replaced by an imperfect interface. The present paper is concerned with the concentration of the external coating layer and the homogenization, via the periodic unfolding method, of the resulting model, which is far from being a standard one. Despite the fact that the limit problem looks like a classical Dirichlet problem for an elliptic equation, in the construction of the homogenized matrix and of the source term, a very delicate analysis is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.