In this paper, we give an overview of novel main-chain azobenzene-based fluorinated poly(arylene ether)s with different content of azo groups, aiming at providing a better understanding of the link between a number of N═N bonds and the macroscopic response of the material. We discuss chemical synthesis and molecular structure and report on a comprehensive analysis of the polymer properties, thermal behavior, and mechanical strength. We show that a higher content of azobenzene moieties reduces the mechanical strength of the polymer materials. On the other hand, polymers with a higher content of azobenzene demonstrate higher values of induced birefringence due to a larger number of azobenzene in the trans form. The photoisomerization constants of all polymers fall within a very close range. The minor variations are attributed to the number of azobenzene groups in the polymer composition and the conformational arrangements of the polymer chain packing. The developed light-sensitive polymers were employed for dynamic control and manipulation of the liquid crystal orientation by polarization of the incident light. After the double irradiation of the substrates using appropriate photomasks, we made patterned cells that consist of domains with different high-resolution liquid crystal director orientations.