Abstract
Nematic chiral liquid crystals (CLCs) are characterized by a helical arrangement of nematic LC molecules. A layer of CLC typically exhibits an optical reflection band due to Bragg reflection in the helical structure. When several layers of CLC are spin-coated and polymerized on top of each other without a barrier layer in between, defect modes can form in their reflection spectrum. By comparing experimental results and simulations, we investigate the origin of the defect modes, thereby revealing details on the behavior of the materials at the interfaces during deposition. Simulations show that these defect modes can originate from the migration of chiral dopant leading to a layer with a smaller pitch or from a discontinuity in the director orientation at the interface between two layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.