The influence of variations in engine speed, injection pressure, injection timing, and multiple injection strategies on the combustion and nanoparticle characteristics of a small Direct injection (DI) diesel engine was experimentally investigated. To measure the size distribution and number concentration of particle emissions, a rotating disk thermo-diluter (dilution system), a Condensation particle counter (CPC), and a Scanning mobility particle sizer (SMPS) were used. The injection pressure was changed from 60 MPa to 120 MPa, at an engine speed of 1200 rpm. Injection timing was varied from Before top dead center (BTDC) 40˚ to Top dead center (TDC). To investigate the effect of multiple-injection strategies, the injection strategies consisted of two pulse signals with different dwell time. The experimental results show that the peak combustion pressure and Rate of heat release (ROHR) profile are increased and ignition delay is shortened with the increase of injection pressure from 60 MPa to 120 MPa. The concentration of soot emission for 120 MPa is lower than that of 60 MPa at advanced injection timing from TDC up to BTDC 25°. As the injection timing advances to over BTDC 30°, soot emissions rapidly increase and the high injection pressure case (120 MPa) creates more emissions than the 60 MPa case. The overall trends of total particle number are relatively increased with high injection pressure for single injection conditions. In the advanced injection timings of over BTDC 30°, the trend of total particle number is high for all injection pressures. For multiple injections, the peak combustion pressures and ROHR of multiple-injection strategies are slightly lower compared with those of single-combustion results. Comparing the multiple injection strategies, soot emission is reduced with the retard of second injection timing (-30°+5°). The overall trends of particle size and total number for the 7 mg+3 mg case revealed the lowest level compared with other cases, which is 50% lower than that for the 5 mg+5 mg case. When compared with single injection results, the total particle number and Dp of multiple injection cases were eventually lower.
Read full abstract