Abstract
ABSTRACTThe purpose of this work is to test the feasibility of biodiesel as a substitute for diesel used in a direct injection (DI) diesel engine. The biodiesel was produced by an esterification and transesterification process. Experiments were conducted with diesel–biodiesel blends containing 10 and 20% biodiesel with the diesel fuel. The results of the biodiesel blends are compared with baseline diesel which was assessed at constant speed in a single cylinder diesel engine at various loading conditions. The physicochemical properties of palm and Calophyllum inophyllum biodiesel and their blends meet the standard specification ASTM D6751 and EN 14214 standards. The maximum brake thermal efficiency was attained with diesel fuel, 10% palm biodiesel (PB10) and 10% C. inophyllum biodiesel (CI10) at all load condition except low load condition. Engine emission results showed that the 20% C. inophyllum with 80% diesel blend exhibited 6.35% lower amount of brake specific carbon monoxide, and the PB20 blend and CI20 blend reduced brake specific hydrocarbon emission by 7.93 and 9.5%, respectively. NOx emission from palm and C. inophyllum biodiesel blends are found to be 0.29–4.84% higher than diesel fuel. The lowest smoke intensity is found at 27.5% for PB10 and CI10 biodiesel blends compared with diesel fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.