In this study, we explore how a fermion–antifermion (ff¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f\\overline{f}$$\\end{document}) pair interacts via an exponentially decaying potential. Using a covariant one-time two-body Dirac equation, we examine their relative motion in a three-dimensional flat background. Our approach leads to coupled equations governing their behavior, resulting in a general second-order wave equation. Through this, we derive analytical solutions by establishing quantization conditions for pair formation, providing insights into their dynamics. Notably, we find that such interacting ff¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f\\overline{f}$$\\end{document} systems are unstable and decay over time, with the decay time depending on the Compton wavelength of the fermions.
Read full abstract