Abstract
In this study, we explore how a fermion–antifermion (ff¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f\\overline{f}$$\\end{document}) pair interacts via an exponentially decaying potential. Using a covariant one-time two-body Dirac equation, we examine their relative motion in a three-dimensional flat background. Our approach leads to coupled equations governing their behavior, resulting in a general second-order wave equation. Through this, we derive analytical solutions by establishing quantization conditions for pair formation, providing insights into their dynamics. Notably, we find that such interacting ff¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f\\overline{f}$$\\end{document} systems are unstable and decay over time, with the decay time depending on the Compton wavelength of the fermions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.