We consider some aspects of classical S-duality transformations in first-order actions taking into account the general covariance of the Dirac algorithm and the transformation properties of the Dirac bracket. By classical S-duality transformations we mean a field redefinition that interchanges the equations of motion and its associated Bianchi identities. By working from a first-order variational principle and performing the corresponding Dirac analysis we find that the standard electromagnetic duality can be reformulated as a canonical local transformation. The reduction from this phase space to the original phase space variables coincides with the well-known result about duality as a canonical nonlocal transformation. We have also applied our ideas to the bosonic string. These dualities are not canonical transformations for the Dirac bracket and relate actions with different kinetic terms in the reduced space.
Read full abstract