Abstract
Hamiltonian and action principle formulations of the basic equations of plasma physics are reviewed. Various types of Lagrangian and Poisson bracket formulations for kinetic and fluid theories are discussed, and it is described how such formulations can be used to derive and approximate physical models. Additional uses are also described. Two applications are treated in greater detail: an algorithm based on Dirac brackets for the calculation of V-states of contour dynamics and the calculation of fluctuation spectra of Vlasov theory and shear flow dynamics by methods of statistical mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.