Strong coupling of mid-infrared (mid-IR) vibrational transitions to optical cavities provides a means to modify and control a material’s chemical reactivity and offers a foundation for novel chemical detection technology. Currently, the relatively large volumes of the mid-IR photonic cavities and weak oscillator strengths of vibrational transitions restrict vibrational strong coupling (VSC) studies and devices to large ensembles of molecules, thus representing a potential limitation of this nascent field. Here, we experimentally and theoretically investigate the mid-IR optical properties of 3D-printed multimode metal–insulator–metal (MIM) plasmonic nanoscale cavities for enabling strong light–matter interactions at a deep subwavelength regime. We observe strong vibration-plasmon coupling between the two dipolar modes of the L-shaped cavity and the carbonyl stretch vibrational transition of the polymer dielectric. The cavity mode volume is half the size of a typical square-shaped MIM geometry, thus enabling a reduction in the number of vibrational oscillators to achieve strong coupling. The resulting three polariton modes are well described by a fully coupled multimode oscillator model where all coupling potentials are non-zero. The 3D printing technique of the cavities is a highly accessible and versatile means of printing arbitrarily shaped submicron-sized mid-IR plasmonic cavities capable of producing strong light–matter interactions for a variety of photonic or photochemical applications. Specifically, similar MIM structures fabricated with nanoscopic voids within the insulator region could constitute a promising microfluidic plasmonic cavity device platform for applications in chemical sensing or photochemistry.