We investigate the stability properties and the dynamics of Bose–Einstein condensates with axial symmetry, especially with dipolar long-range interaction, using both simulations on grids and variational calculations. We present an extended variational ansatz which is applicable for axial symmetry and show that this ansatz can reproduce the lowest eigenfrequencies of the Bogoliubov spectrum, and also the corresponding eigenfunctions. Our variational ansatz is capable of describing the roton instability of pancake-shaped dipolar condensates for arbitrary angular momenta. After investigating the linear regime we apply the ansatz to determine the dynamics and show how the angular collapse is correctly described within the variational framework.