Abstract
Bose-Einstein condensates with an attractive 1/r interaction and with dipole-dipole interaction are investigated in the framework of the Gaussian variational ansatz introduced by S. Rau, J. Main, and G. Wunner [Phys. Rev. A, submitted]. We demonstrate that the method of coupled Gaussian wave packets is a full-fledged alternative to direct numerical solutions of the Gross-Pitaevskii equation, or even superior in that coupled Gaussians are capable of producing both, stable and unstable states of the Gross-Pitaevskii equation, and thus of giving access to yet unexplored regions of the space of solutions of the Gross-Pitaevskii equation. As an alternative to numerical solutions of the Bogoliubov-de Gennes equations, the stability of the stationary condensate wave functions is investigated by analyzing the stability properties of the dynamical equations of motion for the Gaussian variational parameters in the local vicinity of the stationary fixed points. For blood-cell-shaped dipolar condensates it is shown that on the route to collapse the condensate passes through a pitchfork bifurcation, where the ground state itself turns unstable, before it finally vanishes in a tangent bifurcation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.