This paper considers a distributed constrained optimization problem over a multi-agent network in the non-Euclidean sense. The gossip protocol is adopted to relieve the communication burden, which also adapts to the constantly changing topology of the network. Based on this idea, a gossip-based distributed stochastic mirror descent (GB-DSMD) algorithm is proposed to handle the problem under consideration. The performances of GB-DSMD algorithms with constant and diminishing step sizes are analyzed, respectively. When the step size is constant, the error bound between the optimal function value and the expected function value corresponding to the average iteration output of the algorithm is derived. While for the case of the diminishing step size, it is proved that the output of the algorithm uniformly approaches to the optimal value with probability 1. Finally, as a numerical example, the distributed logistic regression is reported to demonstrate the effectiveness of the GB-DSMD algorithm.
Read full abstract