Abstract

In this paper we study the problem of recovering a low-rank matrix from a number of random linear measurements that are corrupted by outliers taking arbitrary values. We consider a nonsmooth nonconvex formulation of the problem, in which we explicitly enforce the low-rank property of the solution by using a factored representation of the matrix variable and employ an $\ell_1$-loss function to robustify the solution against outliers. We show that even when a constant fraction (which can be up to almost half) of the measurements are arbitrarily corrupted, as long as certain measurement operators arising from the measurement model satisfy the so-called $\ell_1/\ell_2$-restricted isometry property, the ground-truth matrix can be exactly recovered from any global minimum of the resulting optimization problem. Furthermore, we show that the objective function of the optimization problem is sharp and weakly convex. Consequently, a subgradient Method (SubGM) with geometrically diminishing step sizes will converge linearly to the ground-truth matrix when suitably initialized. We demonstrate the efficacy of the SubGM for the nonconvex robust low-rank matrix recovery problem with various numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.