Abstract
This article deals with multiobjective composite optimization problems that consist of simultaneously minimizing several objective functions, each of which is composed of a combination of smooth and non-smooth functions. To tackle these problems, we propose a generalized version of the conditional gradient method, also known as Frank-Wolfe method. The method is analysed with three step size strategies, including Armijo-type, adaptive, and diminishing step sizes. We establish asymptotic convergence properties and iteration-complexity bounds, with and without convexity assumptions on the objective functions. Numerical experiments illustrating the practical behaviour of the methods are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.