During pre-implantation development, substantial epigenetic changes occur that are thought to play key roles in achieving embryonic genome activation and totipotency. Embryonic genome activation occurs at the 8- to 16-cell stage in cattle and, although it is a crucial step of development, the specific mechanisms involved are still poorly understood. The aim of this study was to determine whether 4 histone 3 marks associated with active genes are remodelled during oocyte and early embryo development in cattle. The dynamics of acetylation of lysine 27 (H3K27ac), di-methylation of lysine 79 (H3K79me2), and mono- and tri-methylation of lysine 4 (H3K4me1, H3K4me3) were assessed by immunofluorescence and confocal microscopy. Ovaries were obtained from an abattoir. Immature germinal vesicle stage oocytes were aspirated from small antral follicles and matured for 24 h to the metaphase II stage (MII). Embryos were produced by in vitro fertilization and collected at different stages of development: pronuclear [PN; 18 h post-fertilization (hpf)], 2-cell (30 hpf), 4-cell (44 hpf), 8-cell (56 hpf), 16-cell (72 hpf), morula (120 hpf), and blastocyst (180 hpf). Three to 4 biological replicates were done per antibody and a total of 197 oocytes per embryo were imaged (8 to 16 per stage/antibody). The images were analysed using Fiji (Schindelin et al. 2012 Nat. Methods 9, 676–682). The average nuclear intensity per oocyte per embryo was adjusted by the average of 2 cytoplasmic areas (background). An ANOVA mixed model was used for statistical analysis using SAS (SAS Institute Inc., Cary, NC, USA). The least squares means of the different stages were compared (within each antibody group) using a Tukey-Kramer adjustment and were considered to be significantly different at P < 0.05. The H3K79me2 marks showed a significant increase from germinal vesicle to MII, a change opposite that of H3K27ac, which experienced a significant decrease between these two stages. The H3K4me1/me3 marks showed no significant changes during oocyte maturation. All 3 methylation marks presented a significant reduction in nuclear intensity from MII to PN, indicating that these marks are actively removed right after fertilization. The opposite effect was observed for the acetylation mark, in which the levels increased significantly from MII to PN. The H3K4me1/me3 marks showed a gradual decrease in intensity levels from the 2-cell stage onward, reaching a minimum at the 16-cell per morula stages. The H3K79me2 levels were low from PN to 16-cell stage, at which point its intensity levels began to increase, reaching statistical significance at the blastocyst stage. The H3K27ac marks showed a slow decrease in intensity levels from the PN stage, achieving statistical significance as it dropped to a minimum at the 16-cell stage. These results show that the global levels of the assayed epigenetic marks undergo dynamic changes during oocyte maturation and embryo development, suggesting that their remodelling may be important for early development. The authors thank Alta Genetics for providing the semen.