The objective of this work was the preparation and evaluation of a bioresorbable bilayered system for application in the treatment of dermal lesions. The system was based on a polyesterurethane as the external layer and a gelatin membrane as the internal layer. The polyesterurethane was synthesized from poly(ε-caprolactone), polyethylene glycol of 1 or 10 kDa as a hydrophilic component or Pluronic F127 as an amphiphilic component and l-lysine ethyl ester diisocyanate as an urethane precursor. Gelatin membrane was obtained by crosslinking with the naturally occurring crosslinker genipin. Three important points were addressed in this study: the physicochemical characterization of the system, the in vitro behaviour and the in vivo performance on a full-thickness wound defect of rat. The polyesterurethane containing polyethylene glycol of 10 kDa presented the optimum properties for the designed application as to be tested in animal experiments. The in vivo results showed good healing of the lesion with the formation of epidermis similar to normal rat skin. These promising results suggest the potential of this system to be used as an affordable wound dressing in the treatment of different dermal lesions.
Read full abstract