Carbon fibre electrodes combined with differential pulse voltammetry have been used for a number of years to monitor changes in the extracellular concentrations of ascorbic acid, dihydroxy-phenylacetic acid, and 5-hydroxyindoleacetic acid. However, the primary objective of in vivo electrochemists has been to monitor changes in the extracellular concentrations of the neurotransmitter amines; dopamine and serotonin rather than their metabolites. In this paper we describe a new chemically- and electrically-pretreated Nafion-coated carbon fibre electrode which can be used to monitor basal levels of serotonin in the extracellular fluid in the frontal cortex and the dorsal raphe nucleus of rat. These electrodes combined with differential pulse voltammetry detect dopamine (Peak A at —70 mV) and serotonin (Peak B at +240V) oxidation peaks in vitro but not the oxidation of ascorbic acid, dihydroxyphenylacetic acid, 5-hydroxyindoleacetic acid or uric acid, at concentrations up to 10 /gmM. These electrodes were able to detect serotonin concentration as large as 1 nM in vitro. When used in vivo the oxidation peaks obtained in the frontal cortex and dorsal raphe indicate the basal concentrations of serotonin to be 5 nM and 10 nM respectively. Pharmacological interventions in rats implanted with normal carbon fibre electrodes or with Nafion carbon fibre electrodes further demonstrate that the new Nafion electrodes measure serotonin in vivo. The Nafion-coated electrodes therefore may be a useful tool for the study of serotoninergic systems in vivo with the added advantage that they cause minimal damage due to their small tip size (30 μm).
Read full abstract