Energetic analysis of ecologically relevant behaviors can be useful because animals are energetically limited by available muscle mass. In this study we hypothesized that two major determinants of suction feeding performance, the magnitudes of buccal volumetric expansion and subambient buccal pressure, would be correlated with, and limited by, available muscle mass. At least four individuals of three centrarchid species were studied: largemouth bass (Micropterus salmoides), bluegill (Lepomis macrochirus) and green sunfish (Lepomis cyanellus). Buccal pressure was measured directly via cannulation of the buccal cavity with a catheter-tipped pressure transducer. Buccal expansion was estimated from lateral high-speed video (500 or 1000 Hz) sequences and published data on internal kinematics of largemouth bass. These estimates were calibrated from silicone casts made of the buccal cavity post-mortem. Estimated work and power were found to be significantly correlated with muscle mass over all individuals. The slopes of these relationships, estimates of mass-specific muscle work and power, were found to be 11+/-2 J kg(-1) and 300+/-75 W kg(-1), respectively. These estimates are consistent with observations made of in vivo and in vitro muscle use and with digital particle image velocimetry measurements of water flow in feeding centrarchids. A direct trade-off between mean pressure and change in volume was observed, when the latter was normalized to muscle mass. We conclude that available muscle mass may be a useful metric of suction feeding performance, and that the ratio of muscle mass to buccal volume may be a useful predictor of subambient buccal pressure magnitude.
Read full abstract