Jasmonate, an effective elicitor, can induce the biosynthesis of paclitaxel, a well-known anticancer drug, in Taxus cell culture. The jasmonate signaling pathway has been well studied in Arabidopsis, and many early jasmonate-responsive genes have beenfound to be involved in signaling pathway. In Taxus, only a few late jasmonate-responsive genes related to paclitaxel biosynthesis were identified. So, identification of early responsive genes and knowledge of the jasmonate signaling pathway are essential for understanding the effects of jasmonate on paclitaxel biosynthesis and for improving paclitaxel production in Taxus cells. In this study, total RNA of Taxus × media cells cultured in liquid medium was extracted after 0, 0.5, 3, and 24h of methyl jasmonate treatment. Three biological independent repetitions were performed. The 12 extracted RNA samples were integrated and sequenced on an Illumina HiSeq2500 platform using the paired-end method. A total of 45,583 transcript clusters were obtained by de novo assembly of the sequenced reads. Based on the transcriptome data, the digital gene expressions of each RNA sample were investigated. We found that after 0.5, 3, and 24h of methyl jasmonate treatment; 134, 1008, and 987 unigenes were differentially expressed. For the secondary metabolism pathways, phenylalanine pathway unigenes were responsive to jasmonate after 3h of treatment, while genes related to paclitaxel biosynthesis were induced after 0.5h of treatment. The digital gene expression levels of candidate genes related to paclitaxel biosynthesis were confirmed by qRT-PCR. Transcriptome sequencing and digital gene expression profiling identified early jasmonate-responsive genes in cultured Taxus × media cells. The comprehensive time series jasmonate-responsive gene expression data have provided transcriptome-wide information about the mechanism of paclitaxel biosynthesis regulation by jasmonate signaling.