o-Phenylenediamine has been used for glucose oxidase (GOx) immobilization on Pt electrodes by electrochemical polymerization at +0.65 V vs SCE. By this approach the enzyme is entrapped in a strongly adherent, highly reproducible thin membrane, whose thickness is around 10 nm. This one-step procedure produces a glucose sensor with a response time less than 1 s, an active enzyme loading higher than 3 units/cm2 of electrode surface, a high sensitivity, and a sufficiently wide linear range. The glucose response shows an apparent Michaelis-Menten constant, K'm = 14.2 mM, and a limiting current density, jmax of 181 microA/cm2. The product kD of partition and diffusion coefficients of glucose in the polymer film is on the order of 10(-13) cm2/s. Due to permselectivity characteristics of the membrane, the access of ascorbate, a common interfering species, to the electrode surface is blocked. To our knowledge, this represents the first report of a membrane capable, at the same time, of immobilizing GOx and rejecting ascorbate. The interesting electrode behavior can be rationalized by using an existing model predicting the amperometric response of an immobilized GOx system.