ObjectiveWe experimentally test the effect of cognitive load on auditory susceptibility during automated driving.BackgroundIn automated vehicles, auditory alerts are frequently used to request human intervention. To ensure safe operation, human drivers need to be susceptible to auditory information. Previous work found reduced susceptibility during manual driving and in a lesser amount during automated driving. However, in practice, drivers also perform nondriving tasks during automated driving, of which the associated cognitive load may further reduce susceptibility to auditory information. We therefore study the effect of cognitive load during automated driving on auditory susceptibility.MethodTwenty-four participants were driven in a simulated automated car. Concurrently, they performed a task with two levels of cognitive load: repeat a noun or generate a verb that expresses the use of this noun. Every noun was followed by a probe stimulus to elicit a neurophysiological response: the frontal P3 (fP3), which is a known indicator for the level of auditory susceptibility.ResultsThe fP3 was significantly lower during automated driving with cognitive load compared with without. The difficulty level of the cognitive task (repeat or generate) showed no effect.ConclusionEngaging in other tasks during automated driving decreases auditory susceptibility as indicated by a reduced fP3.ApplicationNondriving task can create additional cognitive load. Our study shows that performing such tasks during automated driving reduces the susceptibility for auditory alerts. This can inform designers of semi-automated vehicles (SAE levels 3 and 4), where human intervention might be needed.