One of the sensitive and inexpensive methods used for the analysis of water bodies is the ionometry, the development of which is associated with the introduction of new ion-selective electrodes into the practice of potentiometric analysis. An optimized composition of the membrane for the manufacturing of a zinc-selective electrode based on polyvinyl chloride modified with 2-mercaptobenzthiazole (MPVC) is proposed with the following ratio of ingredients (in wt. %): Polyvinyl chloride - 31.7; dioctyl sebacate - 66.3; potassium tetra-p-chlorophenylborate - 0.5; MPVH - 1.5. The working range of pH was established with a minimum potential drift, which was 1.5 - 3. The slope of the electrode function was calculated as 30.1 ± 0.3 mV. According to the dependence of the electrode potential for the selected composition of the membrane on the logarithm of the zinc ion concentration, it was found that the proposed model of the electrode operates in the concentration range of 1∙10-5 - 1∙10-1 mol / L, with a detection limit of 0.65 mg / l. The stabilization time of the potential within 1 mV was 15 - 20 s. The potentiometric coefficients of the selectivity of the zinc selective electrode with respect to various ions have been determined. The conditions for the determination of zinc using the obtained sensor in alloys and wastewater were proposed. The electrode with the membrane based on polyvinyl chloride modified with 2-mercaptobenzthiazole can be used as an alternative to the industrial electrode XC-Zn-001 for the determination of zinc ions in various objects. The obtained experimental data was close in accuracy to the results obtained by the atomic absorption methods, as well as the ionometry using the industrial electrode. In conclusion, the electrode with the membrane based on polyvinyl chloride modified with 2-mercaptobenzthiazole can be used as an alternative to XC-Zn-001.